Молекулярные основы наследственности

Структура гена, его функция. Характеристика генома человека. ДНК — молекула наследственности. Химические и структурные особенности

Уже из школьной программы биологии известно, что ген — это отрезок молекулы ДНК. Только эта макромолекула из довольно обширного спектра макромолекул, существующих в каждой клетке каждого живого организма, способна самовоспроизводиться, а значит, передавать в поколениях клеток или организмов содержащуюся в ней информацию. Способность ДНК к самовоспроизведению обусловлена особенностями ее химической структуры. Молекула ДНК построена из трех компонентов: сахара, представленного дезоксирибозой, фосфатных групп и 4 типов азотистых оснований — цитозина (Ц), тимина (Т), которые еще называют пуринами, аденина (А) и гуанина (Г). Это — пиримидины.

В 1953 г. Уотсон и Крик опубликовали свою историческую статью о физической структуре ДНК. Согласно модели Уотсона и Крика, молекула ДНК представляет собой двойную спираль. Каждая спираль обвивается вокруг другой спирали вдоль общей оси. Цепи этой спирали образуют дезоксирибоза и фосфатные группы. Через определенные промежутки к каждой цепи крепится азотистое основание, обращенное внутрь спирали. Два основания каждой цепи, расположенные на одном и том же уровне, соединяются между собой.

Самое замечательное в молекуле ДНК то, что каждое азотистое основание может соединиться только с другим строго определенным и комплементарным (подходящим только для него) ему основанием, а именно аденин с тимином, а гуанин с цитозином.

Это свойство нуклеотидов комплементарно спариваться обеспечивает основу для точного воспроизведения последовательности нуклеотидов каждой цепи ДНК. Нуклеотидные цепи ДНК полярны. Полярность определяется тем, как соединяются между собой сахара (дезоксирибозы). Фосфатная группа, присоединенная к С5 (5-углерод) одного сахара, соединяется с гидроксильной группой в положении С, (3-углерод) следующего сахара с помощью фосфодиэфирной связи. В результате концевой нуклеотид на одном конце цепи имеет свободную 5-, а на другом — свободную 3-группу. Последовательность нуклеотидных оснований принято записывать в направлении от 5- к 3-концу. Две нити ДНК антипараллельны друг другу, так как идут в противоположных направлениях и 5-концу одной цепи соответствует 3-конец другой цепи и наоборот.

Модель ДНК Уотсона и Крика объяснила к тому времени хорошо известное правило английского биохимика Чаргаффа, согласно которому в любой молекуле ДНК количество пуринов строго соответствует количеству пиримидинов.

В двойной спирали ДНК пурины-(аденин, гуанин) всегда соединяются с пиримидинами (тимин и цитозин). Между цитозином и гуанином образуется три водородные связи, а между тимином и аденином — две, поэтому иным способом основания соединиться просто не могут.

Элементарной единицей ДНК является нуклеотид, в состав которого входит одна дезоксирибоза, одна фосфатная группа и одно азотистое основание.

Репликация ДНК

Поскольку ДНК является молекулой наследственности, то для реализации этого качества она должна точно копировать саму себя и таким образом сохранять всю имеющуюся в исходной молекуле ДНК информацию в виде определенной последовательности нуклеотидов. Это обеспечивается за счет особого процесса, предшествующего делению любой клетки организма, который называется репликацией ДНК. Суть этого процесса заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5- к 3-концу молекулы, помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к 3-концу вновь синтезируемой цепи ДНК.

В результате репликации образуются две новые, абсолютно идентичные молекулы ДНК, идентичные также исходной молекуле ДНК до начала ее редупликации.

Можно сказать, несколько упрощая, что феномен точного удвоения молекулы ДНК, в основе которого лежит комплементарность оснований этой молекулы, составляет молекулярную основу наследственности.

Скорость репликации ДНК у человека относительно низкая, и для того чтобы обеспечить репликацию ДНК любой хромосомы человека, требовались бы недели, если бы репликация начиналась из одной точки. На самом деле в молекуле ДНК любой хромосомы, а каждая хромосома человека содержит только одну молекулу ДНК, имеется множество мест инициации репликации (репликонов). От каждого репликона репликация идет в обоих направлениях до тех пор, пока соседние репликоны не сливаются. Поэтому репликация ДНК в каждой хромосоме протекает относительно быстро.

Понятие «генетический код»

Для молекулы наследственности, которой является ДНК, мало того, что она сама способна самовоспроизводиться, — это только часть наследственности. ДНК должна каким-то образом кодировать все признаки организма. Большинство признаков любого организма, одноклеточного или многоклеточного, определяется белками: ферментами, структурными белками, белками-переносчиками, белками-каналами, белками-рецепторами. Следовательно, ДНК должна каким-то образом кодировать строение белков и непосредственно порядок расположения в них аминокислот.

Аминокислоты соединяются друг с другом с помощью пептидной связи, которая образуется в результате конденсации аминогруппы (NH2) одной аминокислоты с карбоксильной группой (СООН) другой аминокислоты. Последовательность аминокислот в полипептидной цепи записывают от аминокислоты со свободной NН2-группой до аминокислоты со свободной СООН-группой.

Ученые установили, что код является триплетным, это означает, что каждая аминокислота кодируется тройкой нуклеотидов. Действительно, так как для построения белков используется 20 различных аминокислот, код не может быть однонуклеотидным, поскольку существует всего 4 нуклеотида. Код не может быть также динуклеотидным, так как возможно всего 16 комбинаций из 2 нуклеотидов. При 3 нуклеотидах число комбинаций возрастает до 64, и этого вполне достаточно, чтобы кодировать 20 различных аминокислот. Кроме того, из этого также следует, что генетический код должен быть вырожденным, а именно одна аминокислота может кодироваться более чем одной тройкой нуклеотидов. Еще одним важным свойством генетического кода является то, что он неперекрывающийся, при этом каждую последовательно новую аминокислоту полипептидной цепи кодирует последовательно новый триплет ДНК. Генетический код не содержит знаков препинания, и кодирующие триплеты следуют один за другим. Генетический код является универсальным и используется одинаково как прокариотами, так и эукариотами. Кодирующие триплеты нуклеотидов получили название кодонов.

Наиболее важны первые два нуклеотида каждого кодона. Третий нуклеотид неспецифичен. Три кодона определяют сигнал прекращения синтеза полипептидной цепи (терминация трансляции): УАА, УАГ и УГА. Это означает, что в том месте информационной РНК (мРНК), где находится любой из этих кодонов, синтез полипептидной цепи белка прекращается. Кодоны, указывающие на терминацию синтеза полипептидной цепи, называют стоп-кодонами.

Информационная РНК и процесс транскрипции

Следует объяснить, зачем было так необходимо вводить понятие информационной РНК. Как известно, ДНК содержится в хромосомах клеток и, следовательно, в ядре, а белок синтезируется в цитоплазме клеток. Для того чтобы информация о структуре белка, записанная на языке ДНК, попала в цитоплазму клетки, он сначала переписывается (транскрибируется) на молекулу мРНК.

РНК отличается от ДНК тем, что в цепи РНК остаток сахара представлен рибозой (отсюда ее название), тимин замещен на урацил, который обладает примерно такой же комплементарностью к аденину, как и тимин.

Для того чтобы произошло списывание последовательности нуклеотидов гена, кодирующих первичную структуру определенной полипептидной цепи белка на мРНК, к цепи ДНК на некотором расстоянии от гена, к специальной последовательности нуклеотидов, называемых промотором, присоединяется специальный фермент — РНК-полимераза.

Стартовой точкой транскрипции служит основание ДНК, соответствующее основанию РНК, которое первым включается в транскрипт. Транскрипция мРНК продолжается до тех пор, пока РНК-полимеразе II не встретится сигнал терминации (окончания) транскрипции.

Биосинтез полипептидной цепи

В полипептидной цепи происходят расшифровка информации, закодированной с помощью генетического кода, и построение на матрице мРНК полипептидной цепи определенного белка. В этом процессе участвуют еще два вида РНК — рибосомальная (рРНК) и транспортная (тРНК). Для обоих видов РНК в геноме имеются многочисленные гены, на матрице которых эти РНК синтезируются.

Образование полипептидной цепи из последовательно доставляемых к мРНК тРНК с соответствующими аминокислотами происходит на рибосомах.

Структура гена у высших организмов достаточно сложная. В нее входят промотор, содержащий сайт инициации транскрипции, экзоны и интроны. Экзоны содержат кодирующие последовательности гена, функция интронов остается неизвестной. На границе экзонов и интронов располагается консенсусная последовательность, которая распознается ферментами сплайсинга, т. е. ферментами для вырезания интронов из первичного транскрипта мРНК. На 3-конце гена уже в некодирующей части расположен сайт, обеспечивающий добавление 100—200 остатков аденина к мРНК для обеспечения ее стабильности. Для гена характерна так называемая открытая рамка считывания, т. е. наличие достаточно длинной последовательности триплетов, кодирующих аминокислоты, не перебиваемые стоп-кодонами или бессмысленными триплетами.

Обновлено: 2019-07-09 23:44:56